skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Fisman, Dana"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Fisman, Dana; Rosu, Grigore (Ed.)
    cvc5 is the latest SMT solver in the cooperating validity checker series and builds on the successful code base of CVC4. This paper serves as a comprehensive system description of cvc5’s architectural design and highlights the major features and components introduced since CVC4 1.8. We evaluate cvc5’s performance on all benchmarks in SMT-LIB and provide a comparison against CVC4 and Z3. 
    more » « less
  2. Fisman, Dana; Rosu, Grigore (Ed.)
    Inspired by sum-of-infeasibilities methods in convex optimization, we propose a novel procedure for analyzing verification queries on neural networks with piecewise-linear activation functions. Given a convex relaxation which over-approximates the non-convex activation functions, we encode the violations of activation functions as a cost function and optimize it with respect to the convex relaxation. The cost function, referred to as the Sum-of-Infeasibilities (SoI), is designed so that its minimum is zero and achieved only if all the activation functions are satisfied. We propose a stochastic procedure, DeepSoI, to efficiently minimize the SoI. An extension to a canonical case-analysis-based complete search procedure can be achieved by replacing the convex procedure executed at each search state with DeepSoI. Extending the complete search with DeepSoI achieves multiple simultaneous goals: 1) it guides the search towards a counter-example; 2) it enables more informed branching decisions; and 3) it creates additional opportunities for bound derivation. An extensive evaluation across different benchmarks and solvers demonstrates the benefit of the proposed techniques. In particular, we demonstrate that SoI significantly improves the performance of an existing complete search procedure. Moreover, the SoI-based implementation outperforms other state-of-the-art complete verifiers. We also show that our technique can efficiently improve upon the perturbation bound derived by a recent adversarial attack algorithm. 
    more » « less
  3. Fisman, Dana; Rosu, Grigore (Ed.)
    Fortran is widely used in computational science, engineering, and high performance computing. This paper presents an extension to the CIVL verification framework to check correctness properties of Fortran programs. Unlike previous work that translates Fortran to C, LLVM IR, or other intermediate formats before verification, our work allows CIVL to directly consume Fortran source files. We extended the parsing, translation, and analysis phases to support Fortran-specific features such as array slicing and reshaping, and to find program violations that are specific to Fortran, such as argument aliasing rule violations, invalid use of variable and function attributes, or defects due to Fortran's unspecified expression evaluation order. We demonstrate the usefulness of our tool on a verification benchmark suite and kernels extracted from a real world application. 
    more » « less